Energy and quality scalable wireless communication
نویسنده
چکیده
Nodes for emerging, high-density wireless networks will face the dual challenges of continuous, multi-year operation under diverse and challenging operating conditions. The wireless communication subsystem, a substantial consumer of energy, must therefore be designed with unprecedented energy efficiency. To meet this challenge, inefficiencies once overlooked must be addressed, and the system must be designed for energy scalability— the use of graceful energy vs. quality trade-offs in response to continuous variations in operational conditions. Using a comprehensive model framework that unifies multi-disciplinary models for energy consumption and communication performance, this work explores multi-dimensional trade-offs of energy and quality for wireless communication at all levels of the system hierarchy. The hardware “knob” of dynamic voltage scaling is implemented on a commercial microprocessor and integrated into a power aware, prototype microsensor node. Power aware abstractions encourage collaboration between the hardware, which fundamentally consumes the energy, and software, which determines how the hardware acts. Accurate models of hardware energy consumption reveal inefficiencies of routing techniques such as multihop, and the models are fused with information-theoretic limits on code performance to bound the energy scalability of the hardware platform. An application-specific protocol for microsensor networks is evaluated with a new, interactive Java simulation tool created expressly for energy-conscious, high density wireless networks. Close collaboration between software and hardware layers, and across the research disciplines that compose wireless communication itself, are crucial enablers for energy-efficient wireless communication. Thesis Supervisor: Anantha Chandrakasan Title: Associate Professor of EECS This page intentionally left blank.
منابع مشابه
Design of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملEnergy-Efficient Bandwidth Allocation for Multiuser Scalable Video Streaming over WLAN
We consider the problem of packet scheduling for the transmission of multiple video streams over a wireless local area network (WLAN). A cross-layer optimization framework is proposed to minimize the wireless transceiver energy consumption while meeting the user required visual quality constraints. The framework relies on the IEEE 802.11 standard and on the embedded bitstream structure of the s...
متن کاملCongestion Control Approaches Applied to Wireless Sensor Networks: A Survey
Wireless Sensor Networks (WSNs) are a specific category of wireless ad-hoc networks where their performance is highly affected by application, life time, storage capacity, processing power, topology changes, the communication medium and bandwidth. These limitations necessitate an effective data transport control in WSNs considering quality of service, energy efficiency, and congestion control. ...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملEvaluation of a BIBD Based Directional MAC Protocol for Wireless Ad Hoc Networks
The use of directional antennas in wireless ad hoc networks can significantly improve global performance due to a high spatial channel reuse. Nevertheless, its introduction poses new location dependent problems related to the MAC protocol. In this paper, the Balanced Incomplete Block Design theory has been exploited to develop a new MAC protocol for wireless ad hoc networks using directional ant...
متن کامل